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ABSTRACT: 
investigation of the magnetic properties of selected 
spacecraft materials. Experimental measurements 
describing the  e f fec ts  of magnetic f i e ld  exposure, 
shock, vibration, and temperature on the induced 
and remanent dipole moment of Kovar, D u m e t ,  Invar, 
Nickel, 304SS, 410SS, and 416SS rod specimens are 
presented. Analysis of the  data indicates t ha t  
temperatures of 77' K t o  390° K, shock t o  50 g,  
and vibration t o  25 g produce negligible e f fec ts  
on dipole moment fo r  specimens having length-to- 
diameter r a t io s  of 5.5. The remanent and induced 
moments of rod samples having length-to-diameter 
ra t ios  of 40 or  l e s s  are l inea r ly  related t o  mag- 
netizing forces l e s s  than 25 oersteds. By means of 
the data provided, predictions of the dipole moment 
can be made fo r  these materials i f  the  alloy, 
demagnetization factor,  magnetizing f i e ld ,  volume, 
and length-to-diameter r a t i o  a re  known. 

P. W. Droll and E. J. Iufer,  'Magnetic 

This paper summarizes the r e su l t s  of an 
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Nomenclature 

magnetic induction (Br, residual induction; 
B ~ ~ ,  retentivity;  B,, saturation induction) 

diameter 

magnetizing force, magnetic f i e ld  strength 
(%, applied field;  Hc, coercive force; 
Hcs, coercivity) 

in tens i ty  of magnetization 

length 

magnetic moment 

length t o  diameter r a t i o  

demagnetizing factor 

measurement range 

volume 

permeability, normal 

permeability, apparent 

Qesearch Sc ien t i s t ,  Ames Research Center, NASA, 
Moffett Field, California 94035. 

Recent emphasis on the systematic exploration of 
the boundary of the Earth's magnetosphere and beyond 
has served t o  s e t  s t r i c t  l imitations on the magnitude 
of magnetic f i e lds  produced by the spacecraft. 
assure tha t  spacecraft f i e u s  do not degrade the 
accuracy of the f l i gh t  magnetometers, maximum f i e l d  
in tens i t ies  of 1 nanotesla (1 gamma) are being 
specified fo r  the complete spacecraft. This speci- 
f ication i s  related t o  current f l i gh t  magnetometer 
s ens i t i v i ty  of 0.1 nanotesla and the 4 t o  10 nano- 
t e s l a  quiescent l evZIY6fwin te rp lane ta ry  magnetic 
f i e ld .  A s  l i s t e d  i n  Table 1, the  f ie lds  of pre- 
viously flown spacecraft (l), which were of suffi-  
cient in te res t  t o  be reported, range from 
approximately 0.2 t o  58.8 nanotesla a t  a range of 
2 meters (nominal. sensor loca t ion) .  
spacecraft complying with 1 nanotesla, o r  l e s s ,  
require close attention t o  the  magnetic properties 
of a l l  materials used in  fabrication. 

Although achievement of a low-moment spacecraft 
design would be realized by elimination of a l l  
ferromagnetic materials, a large percentage of elec- 
tronic par t s  s t i l l  contain magnetic materials. 
Therefore, it is extremely useful t o  know the  mag- 
ne t ic  properties of  these essent ia l  components t o  
provide a basis fo r  design and prediction of 
spacecraft f ie lds .  

i n  the design of conventional magnetic c i r cu i t s  may 
be found i n  the l i t e r a tu re .  
of the  materials studied in  t h i s  report a re  inci- 
dental t o  t he i r  application, and consequently, 
l i t t l e  o r  no information can be found on t h e i r  per- 
t inent  magnetic properties. Experimental measure- 
ments have been made t o  provide the missing 
information under conditions simulating the  environ- 
mental exposures occurring during the manufacture, 
transportation, and launch of spacecraft. 

By means of the Tables and Curves found i n  t h i s  
report, it is possible t o  make estimates of the  
magnetic moments of spacecraft components. 

To 

Design of 

Much information on the  types of materials used 

The magnetic properties 

Basic Relationships i n  Ferromagnetism 

There a re  two badic magnetic quantit ies and an 
a rb i t ra ry  constant'from which a l l  other magnetic 
quantit ies a re  derived ( e ) .  
induction, B, ma%netizing force,  H ,  and permeabil- 
i t y ,  k. 
sured by the  mechanical force experienced by a 
current-carrying conductor i n  a magnetic f i e ld .  
The measure of the a b i l i t y  of an e l ec t r i c  current 
t o  produce magnetic induction a t  a given point is 

Permeability is 

They a re  magnetic 

Magnetic induction is the  quantity mea- 

ed the magnetizing force, H. 
rtltlw'of the magnetic induction t o  the 



corresponding magnetizing force.  The value assigned 
t o  the permeability of f ree  space, p , determines 
the system of units and is equal t o  8s X 
r i e s  per meter i n  the MKS system and t o  unity in 
the c.g.6.-e.m.u. system used i n  t h i s  report. 

se t  of characterist ics may be defined. 
demagnetized closed ring specimen is subjected t o  
increasing values of H, there is a corresponding 
but nonlinear increase i n  B. This effect  is illus- 
trated in  Fig. I, and is called the normal induc- 
t ion o r  virgin magnetization curve. 
of the material i s  characterized by the p a r t i a l  
retention of the induction when H is reduced t o  
zero. I f  the material were previously magnetized 
t o  saturation, the induction retained is  called the 
retent ivi ty ,  Brs; for lower exposure levels ,  the 
term residual induction Zr, is  used. The negative 
magnetizing force a t  which B r  becomes zero is  
called the coercive force, Hc, and the moment a t  
which Brs becomes zero is called the coercivity, 

Magnetic induction is made up of two components: 

hen- 

With the def ini t ions of B, H, and p, a dynamic 
If a 

The hysteresis 

Hcs * 

one induced in  the space occupied by the specimen 
(H) and the other due t o  the in t r ins ic  mgnetiza- 
t ion  of the specimen (4x1). That i s  

i3 = Ei + 4xI 
or 

and i is the intensity of magnetization (3 ) .  
Equation (1) is sometimes called the magnetic equa- 
t ion of s t a t e  because it describes the behavior of 
ferromagnetic media in  a magnetic f ie ld .  

netic c i rcu i t  typified by torroidal  core struc- 
tures .  However, spacecraft, magnetic material 
shapes can often be approximated by slender cylin- 
ders.  
compared t o  that  of the material causes the net 
magnetizing force inside the rod t o  be l e s s  than 
the applied fie$d. Classically t h i s  dimunition is 
at t r ibuted t o  the formation of f i c t i t i o u s  poles a t  
the ends of the rod. A s  a result, the hysteresis 
curve for the rod specimen appears t o  be sheared in  
comparison with the hysteresis curve of closed rings 
as  shown i n  Fig. 1. 

These equations assume homogeneity i n  the mag- 

The relat ively high reluctance of space as 

For rod specimens ( 4 )  the equation of s t a t e  is 

o r  the equivalent 

Where 
middle of the rod, flo 
that  yhich would exis t  i f  the specimen were removed 
and B the flux density measured a t  the m&ddle of 
the rod. N represents the demagnetizing factor  t o  
accommodate for specimen shape with a finite-len@;th 
t o  diameter r a t i o  (m). It is assumed that H, B, 
and are  paral le l  t o  flo and uniform throughout 
the specimen, which permits the vector notation t o  
be discarded. 

The normal permeability of a ferromagnetic mate- 
r i a l  is  defined a s  
loop specimen. The magnetic induction is measured 
for known values of H, and p is  calculated. For 
a cylindrical  specimen made from the same material 
the effective permeability ( P I )  i s  l e s s  and may be 
defined by 

i s  the magnetizing f i e l d  actin@; on the 
the applied f i e l d  equal t o  

p = B/H measured on a closed 

(3) 

Substituting (3) and the def ini t ion of normal per- 
meability into equation (2) yields 

(4) 1 -  )I - _  N 
P - 1 p'(p - 1) 437 
- -  

If p >> 1 

For known values of  Ho, N, and p the induction B 
may be calculated from equation (3). 
equation (4) into (2) yields 

Substituting 

H o [ l  + (N/4~)1 - (N33/4n) 
( 5 )  H =  

1 - ( N / ~ I x )  

The intensi ty  of magnetization is obtained by sub- 
s t i tu t ing  (?) into (1) and 

1=1(B- Ho[1 + (N/h)l  - ( N B / ~ z )  

The magnetic moment, M, of a body i s  equal t o  the 
volume integral  of the vector, I, and fo r  rods, 
assuming M i s  paral le l  t o  L is 

1 4x 1 - (N/4x) 

M = T V  

After calculating the magnetic moment of the rod, 
the magnetic f ie lds  can be calculated a t  any range 
using the dipole approximation. The on axis  f i e l d  
of a magnetic dipole is given by 

where R is the distance fromthe geometric center 
of the specimen t o  the point of measurement. There- 
fore,  the external magnetic f i e l d  produced by cylin- 
dr ica l  shaped specimens can be calculated i f  the 
permeability, magnetizing force, and the length-to- 
diameter r a t i o  is known. However, because of the 
simplifying assumptions, experimental measurements 
are  re l ied  upon t o  determine the curve relat ing 
permeability t o  the intensi ty  of magnetization and 
t o  find the curves for residual induction and 
coercive force. 

Materials Selection 

Seven ferromagnetic materials commonly used fo r  
spacecraft electronic or  s t ructural  purposes were 
selected for t h i s  study. These materials and the i r  
uses a re  l i s t e d  in Table 2.  The purity and some 
properties of these material6, shown in Table 3, 
were ver i f ied by independent measurement. 
geometrical shapes of the specimens studied a re  
l i s t e d  i n  Table 4. 

The 

Experimental Apparatus 

The magnetic f i e l d  measurements of the specimens 
were made i n  the Ames Research Center 12-foot c o i l  
f a c i l i t y  ( 5 ) .  The Earth's magnetic f ie ld  was can- 
celed t o  eliminate induced moments in  the specimens 
during residual induction measurements. High f ie ld  



in tens i t ies  were generated using a multiturn c o i l  
approximately10 em long and 10 cm i n  diameter 
which produced f i e lds  from zero t o  400 gauss uni- 
form t o  *3$ over the volume of the  specimens. The 
low f i e l d  in tens i t ies  were generated using a sole- 
noid 61 cm in length and having a bore approxi- 
mately 15 cm i n  diameter. 
in tens i t ies  of the  specimens w e r e  measured with a 
fluxgate magnetometer2 sensit ive t o  0.2 gamma. 

The mgnetic f i e l d  

Experimental Procedure 

Induct ion Measurement 

The magnetic induction t e s t s  were performed on 
demagnetized specimens. The s t ray  f i e lds  of the  
c o i l  were compensated using c i r cu i t ry  b u i l t  into 
the magnetometer. After placing the specimens i n  
the unenergized co i l ,  the current was adjusted t o  
provide a preselected magnetizing force and the  
r e s u t i n g  f i e l d  in tens i ty  measured by the mgne- 
tometer was  recorded. The specimen was then with- 
drawn and demagnetized i n  preparation fo r  the  next 
higher exposure leve l .  

Residual Induction Measurements 

The procedures used fo r  the  residual mgnetic 
induction measurements were similar t o  the t e s t s  
for  magnetic induction. The depermed specimens 
were placed i n  the c o i l  and exposed t o  a known mag- 
netizing force. 
the residual magnetic f i e lds  of the specimens were 
measured using the magnetometer under zero ambient 
f i e ld  conditions. 

After the  c o i l  was de-energized, 

Coercive Force Measurements 

Coercive force measurements were made a f t e r  each 
specimen had been exposed t o  a known magnetizing 
force. The residual magnetic induction was brought 
t o  zero by applying a momentary magnetizing force i n  
the direction opposite t o  the i n i t i a l  exposure. 
Values f o r  the  i n i t i a l  exposure and fo r  the reversed 
exposure which reduced the  residual induction t o  
zero were recorded. Conventional coercive force 
measurements a re  made during application of a mag- 
netizing force which reduces the  induction t o  zero. 
However, fo r  these studies,  momentary exposures 
were used t o  r ea l i s t i ca l ly  simulate the exposures 
received by spacecraft. 

Vibration and Shock Effects Measurements 

Vibration stresses were induced into the  speci- 
mens using a M.B. Electronics Model 2750MB ampli- 
f i e r  with a Model C11-D calibrator/exciter system. 
The accelerometer used t o  monitor the g leve ls  
was a Columbia Model 504-3 with a Model 602 Dial-A- 
G a i l  amplifier. The drive unit  was set up a t  a 
remote location t o  avoid magnetic interference. A 
nylon shaker f ix ture  which held the specimens was 
connected horizontally t o  the  exciter system via  a 
182 cm (6 f t )  thin-walled aluminum push rod, 1.5 cm 
i n  diameter. Dead load deflection of the  push rod 
was reduced by use of a two point suspension near 
i t s  center. The natural  resonant frequency of the 
rod and f ix ture  was determined t o  be outside the  

2Forster-Hoover M. F. 50,050 

vibration frequency band of in t e re s t .  
t i on  l eve l  of 25 g was induced in the  samples over 
a frequency range of from zero t o  2000 Hertz f o r  a 
period of t i m e  not exceeding 300 seconds t o  simulate 
the launch environment. The specimens were first 
vibrated while in a 25 oersted magnetizing force t o  
determine the  induced moment e f fec ts  and then 
vibrated after a momentary exposure t o  a 25 oersted 
magnetizing force t o  determine residual moment 
e f fec ts .  

The specimens were subjected t o  shock stresses 
by dropping the specimens on a hard surface from an 
elevation of approximately 30 cmto  obtain a shock 
l eve l  of approximately 50 g. Shock tests were per- 
formed on the  specimens a f t e r  they were subjected 
t o  a mgnetizing force of 25 oersted t o  determine 
i f  the  residual magnetic induction would change. 

An accelera- 

Temperature Effects Measurements 

The influence of temperature on Br s t a b i l i t y  
was determined by exposing specimens t o  a 100 gauss 
magnetizing force and then varying the temperature. 
Measurements of the magnetic f i e l d  intensity were 
performed on specimens a t  390° K and 7 7 O  K. 

Error Analysis 

The estimated error i n  the calculated induction 
f i e l d  values is <,loo%. 
the following: 
ing from composition or  processing and (b) nonuni- 
form magnetization in tens i ty  over the en t i re  
cylindrical  shape. 
calculated values of magnetic moment obtained from 
measurements of the external f i e l d  is considered t o  
be l e s s  than 5% including random and sys t emt i c  
errors.  

Temperature measurement uncertainties of 15' K 
a t  the elevated temperature and 3O K at  the low tem- 
perature resulted primarily from the inabi l i ty  t o  
attach thermocouples d i r ec t ly  t o  the specimens. 

The e r ror  i s  a t t r ibu ted  t o  
(a )  variations i n  properties result- 

The estimated uncertainty of the 

Experimental Results 

The materials tested can be divided into two 
types according t o  application: The f i r s t  type, 
consisting of Kovar, Invar, Dumet , and Nickel , is 
used i n  the manufacture of electronic parts and is  
presented together in  the graphs. The second type, 
consisting of 416, 410, and 304 stainless steel, is 
used i n  the  manufacture of  structures and fasteners 
and is  similarly grouped. 

Induction Properties 

The induction moments of seven different mate- 
rials w e r e  obtained for  various length t o  diameter 
r a t io s  as a function of magnetizing force. Also, 
the induction moment of Kovar was measured as a 
function of length t o  diameter r a t io  a t  one l eve l  
of mgnetizing force. 

a re  shown i n  Fig. 2.  The Kovar and Invar samples, 
tested in configuration A (m = 5.5) exhibit a very 
l i nea r  response t o  magnetizing forces l e s s  than 
100 oersteds. However, the Kovar and Dumet samples 
i n  configuration B (m = b), show a tendency t o  
saturate at the 100 oersted leve l .  The t e s t  
results on the 416SS, klOSS, 3OkS, and Nickel 
samples i n  configuration A did not tend t o  saturate 

The induction moments of Kovar, Invar, and Dumet 



as the  magnetizing force approached the 
100 oersted l eve l .  
data as a function of magnetizing force. The 
4lOSS and 416SS data are plotted as one curve 
because t h e i r  characterist ics a re  very similar, 
see Table 2. 

The ef fec t  of m on the  induced moment of 
Kovar samples tes ted  i n  configurations B through L 
a t  a magnetizing force level of 1 oersted is  
shown i n  Fig. 4, and l i s t e d  i n  Table 13. 
leve l  of magnetizing force was chosen t o  assure 
tha t  the  specimen would not saturate i n  configura- 
t ion  L (m = 240). 
moment curve does show a tendency t o  saturation a t  
high m values. The r e su l t s  of t h i s  t e s t  i l lus-  
t r a t e  a very important design consideration. That 
is, i f  a long piece of magnetic lead material were 
reduced i n  length, by an order of magnitude, t he  
induced moment of the lead would be diminished by 
approximately two orders of magnitude. Reducing 
the  m value i s  then an effective method of 
reducing induced moment. 

Figure 3 illustrates typica l  

The low 

However, the  theore t ica l  induced 

Residual Induction Properties 

The residual induction moments of a l l  the  mate- 
rials are shown in  Figs. 5 and 6, and l i s t e d  i n  
Tables 5 through 12. The results shown i n  Fig. 5 
indicate tha t  the residual induced moment of Kovar 
and Dumet with high values of m ( b )  approach 
saturation a t  re la t ive ly  low leve ls  of magnetizing 
force. In f ac t ,  it could be inferred that they 
w i l l  saturate very close t o  the 30 oersted leve l .  
It appears tha t  the knee of the Dumet curve is 
closer t o  the 20 oersted leve l .  The Kovar and 
Invar samples with m% of 5.5 show l inea r  charac- 
t e r i s t i c s  over the magnetizing force range with 
only s l i g h t  tendencies t o  saturate.  
l a r  i n  shape t o  the Kovar and Invar, m = 5.5, were 
obtained for  Nickel, 416SS and 410SS as shown i n  
Fig. 6. 
indicate tha t  a l l  of  the materials except 304SS 
are  equally magnetic. 
i t i c  s ta in less ,  it should exhibit lower 
magnetizations. 

Curves simi- 

A general comparison of Figs. 5 and 6 

Since 304SS is an austen- 

Coercive Force Properties 

The coercive force properties of a l l  the  con- 
figuration A materials except Dumet , were obtained 
as a function of magnetizing force. These results 
a re  shown i n  Fig. 7. The data i l l u s t r a t e  that 
304SS is the only material exhibiting a l i nea r  
response t o  magnetizing force over the range of 
zero t o  100 oersteds. 
of the magnetizing force, i f  applied in  the  oppo- 
s i t e  direction i n  the sample w i l l  always reduce 
the residual induction t o  a zero value. It should 
be noted that a similar condition ex is t s  f o r  the  
other materials at magnetizing forces less than 
approximately 25 oersteds. 

That i s ,  a fixed percentage 

Vibration and Shock Effects on Properties 

The vibration and shock leve ls  which were deter- 
mined from known levels of the  THOR DELTAlaunch 
environment, were induced into the specimens i n  
configuration A. The specimens were subjected t o  
vibration leve ls  while in a magnetizing f i e l d  of 
25 oersteds and again i n  zero ambient f i e l d  a f t e r  
momentary exposure a t  the same level.  They were 
subjected t o  shock s t resses  on the order of 50 g 

after a momentary exposure of 25 oersteds. The 
r e su l t s  of those tests indicate tha t  mechanical 
e f fec ts  on the  m e t i c  properties of specimens with 
m = 5.5 are negligible (less than 5%) for magnetiz- 
ing f i e lds  of 25 oersteds. 

Temperature Effects on Properties 

The samples i n  configuration A were subjected &o 
temperatures of 390° K and 77O K a f t e r  exposure t o  
a 25 oersted magnetizing force. Data obtained with 
specimens a t  these temperatures showed a negligible 
change. 

Discuss ion 

Comparisons of experimental data with values of 
induction moment calculated f o r  Kovar ( 6 ) ,  Invar 
(71, Nickel ( 8 ) ,  416SS (81, are shown i n  Figs. 2 
and 3. 

Reasonably good agreement i s  shown fo r  a l l  speci- 
mens at the high leve ls  of mgnetizing force because 
the permeability i s  becoming more nearly constant. 
Better agreement could be obtained i f  equation (3) 
were expanded t o  account for  the nonuniform inten- 
s i t y  of magnetization i n  cylindrical  specimens. A 
closer approximation t o  B might be obtained by 
integrating B over the length of the rod t o  find 
some average value correction factor.  Bozarth (3) 
suggests the  need fo r  "some kind of averaging." 
The figures indicate tha t  the  experimental and theo- 
r e t i c a l  values agree within a factor which ranges 
from about 1.2 t o  2 .  

No theoretical  model was found which would per- 
m i t  accurate calculation of the residual induction 
moment as a function of magnetizing force. An 
attempt w a s  made t o  apply a hyperbolic demagnetiza- 
t ion  curve approximation based on permanent magnet 
materials t o  these specimens; however , the develop- 
ment proved invalid. 
model, one can use the residual induction moment 
data contained in  t h i s  report for estimating the 
residual moment of parts.  
induction B is  always la rger  than the Br, f o r  a 
given exposure level,  one may calculate a worst 
case remanent moment using the equations fo r  
induct ion. 

In l i e u  of a mathematical 

Recalling that the 

Conclusions 

An analytical  model of the  induction moment of 
rod specimens, based on formulas available i n  the 
l i t e r a tu re  , was derived. 
t i on  of the model was accomplished by demonstrating 
the influence of permeability, demagnetization fac- 
t o r ,  magnetizing force, and volume on the materials. 
The model was found t o  give a reasonably accurate 
prediction of induction moment f o r  specimens whose 
length t o  diameter r a t io  ranged from 5 t o  100. 
Analysis of the induction moment experimental data 
indicates the following: 

The calculated value of induction moment was 
always la rger  than the  experimental value. 

All of the  controlled expansion alloys studied 
have similar magnetic properties and the i r  induction 
moments are approximately l inear  for magnetizing 
environments less than 30 gauss. 

decrease two orders of magnitude fo r  a decrease in 
length t o  diameter r a t io  of one order of magnitude. 

Efforts t o  develop an ana ly t ica l  model for  calcu- 
l a t ing  the coercive force and the residual induction 

Experimental verif  ica- 

The mgnetic moment of a cylindrical  specimen can 



moment were not successful. The experimental mea- 
surements covering the length-to-diameter r a t i o s  
and the magnetic f i e l d  exposure levels  of in te res t  
i n  spacecraft design support certain generaliza- 
tions: 
t ion moments are a t  l e a s t  an order of magnitude 
less than the induction moments for a given mag- 
netizing force. The residual induction moment may 
be l inear ly  extrapolated t o  low f i e l d  values f o r  
mgnetizing forces l e s s  than 25 gauss. For proba- 
ble spacecraft exposure f i e l d  levels  (1-10 gauss),  
there is l i t t l e  basis f o r  distinguishing between 
the controlled expansion al loys on the basis  of 

?he coercive force measurement data indicate 

For any one material, the  residual induc- 

J the i r  residual induction moments. 

tha t  a l l  of materials tes ted with a length t o  
diameter r a t i o  of 5.5 are  similar i n  t h e i r  
response t o  magnetizing forces of less than 
10 gauss. In addition, the r a t i o  of the coercive 
force t o  the magnetizing force tends t o  be a con- 
s tant  value of approximately 0.5 for  the 10 gauss 
f i e l d  level .  

From the standpoint of lnaterial selection, 
there i s  apparently no basis  for selecting &met 
i n  preference t o  Kovar from a magnetic moment 
standpoint. 

The use of l inear  extrapolation techniques t o  
estimate residual induction moment of specimens 
having length-to-diameter ra t ios  in  the order of 
f ive is apparently valid for standard exposure 
f ie lds  of 25 gauss o r  l e s s .  
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TABLE 1--Magnetic f i e l d s  of some interplanetary spacecraft. 

Spacecraft 25 Demagnetizeda Date magnetizing force 

OGO-A (8) 4/15/64 146.8 58.8 
0.6 Explorer (8) IMP-C 7/30/64 15 e 7  

Explorer XXI (8) IMP-B 8/14/64 u . 3  0 *5 
Pioneer V I  12/16/65 1.6 0.2 
Pioneer V I 1  8/17/66 1.5 0.2 

aApproximate measurement range, 2 meters. 

TABLE 2--Materials selected fo r  study. 

Materials 
Nickel 
Kovar 

Dumet  
Invar 
410 s ta inless  s t e e l  

416 s ta inless  s t e e l  
304 s ta inless  steel 

Use 
Electronic components 
Electronic components 

Electronic components 
Electronic components 
Structural  

Structural  
Structural  

Comment 
A standard lead material; good weldability 
Controlled expansion alloy; useful lead mate4 

rial - has coefficient of t h e m 1  expansion 
matching glass 

Standard lead material, good weldability 
Controlled expansion al loy 
General purpose s ta inless  s t e e l .  Excellent 

availabil i ty;  g o d  resistance t o  chemicals 
and atmosphere 

Free machining modification of type 410 
Low carbon modification of 3O2SS. 
atmosphere resistance and machinability 

Excellent 



TABLE 3--Chemical and physical properties of rod specimns. 

Rockwell 
hardness conrment 

C C r  Fe Mn N i  P S i  S Co B C 

Nickel Pacific Metals 0.03 --- --- --- pc" --- 0.08 --- 90 *5 Cold drawn 
heat #NNp'jOA 

Kovar Westinghouse --- --- 53.00 0.46 29.00 --- 0.01 --- 17.53 82.8 Heat #/920050 

Dumet  General Elec- --- --- 57.00 1.00 42.00 __- ___  ___ ___ ___ Has copper 

Invar Carpenter 0.08 --- pc 0.87 35.74 --- 0 .31 -_- --_ 94 .O Cold drawn 

4lOSS Carpenter 0.12 12.13 F'C 0.53 --- 0.01 0.33 0.01 --- 98.5 Cold drawn 

k j o r  constituents, $ 
Material Source 

Electric Co. 

t r i c  Company sheath 

s t e e l  heat #66719 

steel heat #81&91 

Center Stock 
Annealed 
grain s ize  

30okss Carpenter 0.07 18.30 pc 0.94 8.47 0.03 0.64 0.02 --- 28.5 cold drawn 

416SS Ames Research 0.01 12.85 PC 0.82 --- 0.02 0.36 0.26 --- 98 *5 
i t e m  #9 

s t e e l  heat #67844 

*Principal constituent - remainder of percentage. 

TABLE 4--Geometrical properties of rod specimens. 

M Volume, 
cubic cm Configuration Length, cm Diameter, cm 

5 -47 
40 .oo 

A 5.080 0 * 952 3 .Q 
B 5.080 0 2 7  o .06 
C 7.62 o .127 0 .lo 60 .oo 
D i o  .16 0 .I27 0.13 80 .oo 
E l 2 . 7 G  o .127 0.16 100.00 
F 15.24 0 .I27 0.19 I20 .oo 
G 17-78 0 .I27 0.22 140 .oo 
H 20.32 o .127 0.26 160 .oo 
I 22.86 o .127 o .29 180 .oo 
J 25 .40 o ,127 0.32 200 .oo 
K 27.94 0.127 0.35 220 .oo 
L 3048 0.127 0.38 240 .OO 

TABLE 5--Results of nickel t e s t s .  
[N/~R = 0.036, m = 5.4, V = 3.621 cm] 

Coercive Residual Magne- Field Field Induction Induction induction 
t iz ing  Normal intensity,  intensity,  moment, moment, force, 
force, perme- theoretical ,  experimental, theoretical ,  experimental, moment ' experimental, 

g- ga- gauss-cm3 oersted gauss-cm3 gauss-cm3 oersted a b i l i t y  

* c-- 14.7 --- 2.08 --- --- 0.5 

5 -0 720 271.8 124 .O 38.5 17.6 0.2 2 *3 
--- 1.0 1000 54.9 27.8 7 *8 3 *9 0 .o 

--- 10 .o 410 528 .i 280 .o 74.8 39 -6 0.7 
15 .O 287 770.4 420 .O 109.1 59.5 1.8 7 *5 
20 .o 220 999 -2 568 .o 141.5 80.4 3 -3 -5- 

172.4 101.5 5.2 12.9 
--- --- 10.8 18.2 

25 .O 180 1217.3 717.0 
35 -0 --- --- --- 
100 .o 58 3754 2 3313 -0 531 *5 469.1 75 -0 42.1 
* 
Data unavailable. 



TABLF: 6--Results of Kovar tests. 
(N/4-n = 0.036, m = 5.4, V = 3.6 c f i ,  R = 30.48 cml 

R e s  idual 

moment, 
Magne- Field Field Induction Induct ion induct ion Coercive 
t iz ing intensity,  intensity,  moment, moment, 
force, perme- theoret ical ,  experimental, theoretical ,  experimental, experimental, 

force, 

a b i l i t y  gauss-cm3 gauss-c@ experimental, oersted 
g a m  gauss-cm3 oersted 658- 

--- --- 
--- 0.5 1000 27.4 20.6 3.9 2.9 

1.0 2000 55.7 39.0 7.9 5 -5  0 .o 
5.0 2375 279.3 193 *o 39.5 27 *3 0 .e 2.3 

10.0 1600 555 *3 388 .o 78.6 54.9 0.8 
15.0 1300 829.6 580 .o u 7 . 4  82.1 1.8 7.1 
20.0 1100 1101.8 769 -0 155.9 108 -9 2.9 
25 .o 900 
35 -0  

--- 

--- 
133 -9 4.2 10 .g 
--- 6.6 14.2 

1369.4 946 .o 193 -8 --- --- --- --- 
100 .o 200 4938.1 4330 .O 699 2 613 .i 18 .I. 26 .i 

TAB’U 7--Resdt6 Of Kovar t e s t s .  
[ N / h  = 0.0018, m = 40, V = 0.064 cm] 

--- --- 0.5 1000 6.4 3 -8 0 -9 0 -5 
1.0 2000 15 -7 7.6 2 *2 1.1 0 .o --- 
5.0 2375 81.2 47.5 11.5 6.7 1 - 3  

10.0 1600 148.7 88 .o 21 .o 12.4 2.3 
15.0 1300 210.5 140 .o 29.8 19.8 3.0 
20.0 1100 266 .i 176 .o 37.7 24.9 3 -6 

309.5 210 .o 43.8 29.7 3 -8 25 .o 900 
35 -0 

100 .o 200 527.9 434 74.7 61.4 4.3 

--- 
--- 
--- 
--- 
--- 
--- 4 -1 --- --- --- --- --- 
--- 

TABLE g--Results of Invar t e s t s .  
[ N / h  = 0.036, m = 5.4, V = 3.6 c$, R = 30.48 em] 

--- --- --- 
--- 3.0 21.2 * --- 0 *5 

1 .o 85 42.1 40 .O 6 .o 5 *7 0 .o 
5 -0 500 267 -2 203 .o 37.8 28.7 0.3 

10 .o 610 539 08 411 .O 76.4 58.2 1.3 
2.6 
--- 

15 .o 470t 798 -5 618 .o 113 .o 87.5 2 -9 8 . O S  --- 20 .o b o t  1054.5 824 .O 149.3 116.7 4.8 
25 .o 30Of 1289 .i 1006 .o 182.5 142.4 6 e 5  10.3 * --- --- --- 12.3 9.3 35 -0 

100 .o * --- 4135 .O --- 585.4 19.4 21  .o 
--- 

%ta unavailable. 
tExtrapolated . 



TABLE 10--Results of 416SS t e s t s .  
[N/4n = 0.036, m = 5.4, V = 3.6 CIS, R = 30.48 cm] 

Residual 

moment, 
Field Field Induct ion Induction induction Coercive 

g= g a m  gauss-om3 gauss-cnP gauss-cm3 oersted 

force, 
experimental, 

Normal 
perme- 

hgne- 

force, ability theoret ical ,  experimental, theoretical ,  experimental, 
oersted 

intensity,  intensity,  moment, moment, 

TABLE E--Results of 303SS t e s t s .  
[N/4n = 0.036, m = 5.4, V = 3.62 cm3, R = 30.48 cm] 

TABLE 13--Theoretical and experimental induction moments of Kovar as  a function 
of L/D r a t i o  = 1 oersted, p = 2000. 

Field Field Induct ion Induct ion 
(L/D) N/4f10-5 Volume, Measurement, intensity,  intensity,  moment, momenl , 

m cm3 range-cm theoretical ,  experimental, theoretical ,  experimental, 
g a m  gauss-em3 gauss-cm3 

240 6.2 0.385 152.4 3 1.7 54.6 30.1 
220 7.4 0.353 139 7 3.6 2 .o 48.9 27.2 
200 9.0 0.323. 127.0 4.2 2 .o 43.3 20.5 

140 18.0 0.225 88.9 7.5 4.7 26.3 16.5 

100 36.0 0.161 63.5 11.6 9.1 14.8 11.6 

5.5 

180 11.0 0.289 114.3 5 -0 2.6 37.7 19.4 
160 14.0 0.257 101.6 6.1 3 -0 31.9 15-7 

120 25.0 0.193 76.2 9 -2 6.3 20.4 13.9 

80 54.0 0 . ~ 9  50.8 15 .O 11.2 9 -8 7.3 
60 90.0 0.096 38.1 19.7 
40 180.0 0.064 25.4 27.1 --- 20 .o 5.4 --- 2.2 



Od-VIRGIN YffiNETIZATIMI I 
Fig. 1--Normal and sheared hys te res i s  l oops .  
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Fig .  2--Effect of magnetizing force  on induction 
moment. 
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Fig. 3--Effect of magnetizing force on induction 
moment. 
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Fig. b--The e f f e c t  of length-to-diameter r a t i o  on 
induction moment f o r  Kovar. 
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Fig. 7--Effect of magnetizing force  on coercive 
force.  


